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1 Introduction

Genetic Algorithms are a family of computational models inspired by evolution. These algorithms en-

code a potential solution to a specific problem on a simple chromosome-like data structure and apply

recombination operators to these structures as as to preserve critical information. Genetic algorithms

are often viewed as function optimizer, although the range of problems to which genetic algorithms have

been applied are quite broad.

An implementation of genetic algorithm begins with a population of (typically random) chromosomes.

One then evaluates these structures and allocated reproductive opportunities in such a way that these

chromosomes which represent a better solution to the target problem are given more chances to ‘reproduce’

than those chromosomes which are poorer solutions. The ’goodness’ of a solution is typically defined with

respect to the current population.

1.1 Background

Many human inventions were inspired by nature. Artificial neural networks is one example. Another

example is Genetic Algorithms (GA). GAs search by simulating evolution, starting from an initial set of

solutions or hypotheses, and generating successive ”generations” of solutions. This particular branch of

AI was inspired by the way living things evolved into more successful organisms in nature. The main

idea is survival of the fittest, a.k.a. natural selection.

A chromosome is a long, complicated thread of DNA (deoxyribonucleic acid). Hereditary factors that

determine particular traits of an individual are strung along the length of these chromosomes, like beads

on a necklace. Each trait is coded by some combination of DNA (there are four bases, A (Adenine), C

(Cytosine), T (Thymine) and G (Guanine). Like an alphabet in a language, meaningful combinations of

the bases produce specific instructions to the cell.

Changes occur during reproduction. The chromosomes from the parents exchange randomly by a

process called crossover. Therefore, the offspring exhibit some traits of the father and some traits of the

mother. A rarer process called mutation also changes some traits. Sometimes an error may occur during

copying of chromosomes (mitosis). The parent cell may have -A-C-G-C-T- but an accident may occur

and changes the new cell to -A-C-T-C-T-. Much like a typist copying a book, sometimes a few mistakes

are made. Usually this results in a nonsensical word and the cell does not survive. But over millions of

years, sometimes the accidental mistake produces a more beautiful phrase for the book, thus producing

a better species.

1.2 Natural Selection

In nature, the individual that has better survival traits will survive for a longer period of time. This in

turn provides it a better chance to produce offspring with its genetic material. Therefore, after a long

period of time, the entire population will consist of lots of genes from the superior individuals and less

from the inferior individuals. In a sense, the fittest survived and the unfit died out. This force of nature

is called natural selection.
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The existence of competition among individuals of a species was recognized certainly before Darwin.

The mistake made by the older theorists (like Lamarck) was that the environment had an effect on an

individual. That is, the environment will force an individual to adapt to it. The molecular explanation

of evolution proves that this is biologically impossible. The species does not adapt to the environment,

rather, only the fittest survive.

1.3 Simulated Evolution

To simulate the process of natural selection in a computer, we need to define the following: A representa-

tion of an individual At each point during the search process we maintain a ”generation” of ”individuals.”

Each individual is a data structure representing the ”genetic structure” of a possible solution or hypoth-

esis. Like a chromosome, the genetic structure of an individual is described using a fixed, finite alphabet.

In GAs, the alphabet 0, 1 is usually used. This string is interpreted as a solution to the problem we are

trying to solve.

For example, say we want to find the optimal quantity of the three major ingredients in a recipe (say,

sugar, wine, and sesame oil). We can use the alphabet 1, 2, 3 ..., 9 denoting the number of ounces of

each ingredient. Some possible solutions are 1-1-1, 2-1-4, and 3-3-1.

As another example, the traveling salesperson problem is the problem of finding the optimal path to

traverse, say, 10 cities. The salesperson may start in any city. A solution is a permutation of the 10

cities: 1-4-2-3-6-7-9-8-5-10.

As another example, say we want to represent a rule-based system. Given a rule such as ”If color=red

and size=small and shape=round then object=apple” we can describe it as a bit string by first assuming

each of the attributes can take on a fixed set of possible values. Say color=red, green, blue, size=small,

big, shape=square, round, and fruit=orange, apple, banana, pear. Then we could represent the value

for each attribute as a sub-string of length equal to the number of possible values of that attribute. For

example, color=red could be represented by 100, color=green by 010, and color=blue by 001. Note also

that we can represent color=red or blue by 101, and any color (i.e., a ”don’t care”) by 111. Doing this

for each attribute, the above rule might then look like: 100 10 01 0100. A set of rules is then represented

by concatenating together each rule’s 11-bit string. For another example see page 620 in the textbook

for a bit-string representation of a logical conjunction.

1.4 Genetic algorithm vocabulary

Explanation of Genetic Algorithm terms:

Genetic Algorithms Explanation

Chromosome(string, individual) Solution (coding)

Genes (bits) Part of solution

Locus Position of gene

Alleles Values of gene

Phenotype Decoded solution

Genotype Encoded solution

2 The Canonical Genetic Algorithm

2.1 Concepts

Genetic Algorithms are search algorithms that are based on concepts of natural selection and natural

genetics.Genetic algorithm was developed to simulate some of the processes observed in natural evolution,

a process that operates on chromosomes (organic devices for encoding the structure of living being). The

genetic algorithm differs from other search methods in that it searches among a population of points, and

works with a coding of parameter set, rather than the parameter values themselves. It also uses objective

function information without any gradient information. The transition scheme of the genetic algorithm is
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probabilistic, whereas traditional methods use gradient information.Because of these features of genetic

algorithm, they are used as general purpose optimization algorithm. They also provide means to search

irregular space and hence are applied to a variety of function optimization, parameter estimation and

machine learning applications.

2.2 Basic Principle

The working principle of a canonical GA is illustrated in Fig. 1. The major steps involved are the genera-

tion of a population of solutions, finding the objective function and fitness function and the application of

genetic operators. These aspects are described briefly below. They are described in detail in the following

subsection.

/*Algorithm GA */

formulate initial population

randomly initialize population

repeat

evaluate objective function

find fitness function

apply genetic operators

reproduction

crossover

mutation

until stopping criteria

Figure 1: The Working Principle of a Simple Genetic Algorithm
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Figure 2: The basic GA operations: One generation is broken down into a selection phase and recombi-

nation phase. Strings are assigned into adjacent slots during selection.

An important characteristic of genetic algorithm is the coding of variables that describes the problem.

The most common coding method is to transform the variables to a binary string or vector; GAs perform
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best when solution vectors are binary.If the problem has more than one variable, a multi-variable coding is

constructed by concatenating as many single variables coding as the number of variables in the problem.

Genetic Algorithm processes a number of solutions simultaneously. Hence, in the first step a population

having P individuals is generated by pseudo random generators whose individuals represent a feasible

solution. This is a representation of solution vector in a solution space and is called initial solution. This

ensures the search to be robust and unbiased, as it starts from wide range of points in the solution space.

In the next step, individual members of the population are evaluated to find the objective function

value. In this step, the exterior penalty function method is utilized to transform a constrained opti-

mization problem to an unconstrained one. This is exclusively problem specific. In the third step, the

objective function is mapped into a fitness function that computes a fitness value for each member of the

population. This is followed by the application of GA operators.

2.3 Working Principle

To illustrate the working principles of GAs, an unconstrained optimization problem is considered. Let us

consider following maximization problem,

Maximize f(x), xl
i ≤ xi ≤ xu

i , i = 1, 2, ...., N, (1)

where, xl
i and xu

i are the lower and upper bound the variable xi can take. Although a maximization

problem is considered here, a maximization problem can also be handled using GAs. The working of GAs

is completed by performing the following tasks.

2.4 Coding

In order to use GAs to solve the above problem (equation 1), variables xi’s are first coded in some

string structures. It is important to mention here that the coding of the variables is not absolutely

necessary. There exist some studies where GAs are directly used on the variables themselves, but here

these exceptions are ignored and the working principles of a simple genetic algorithm is discussed.
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Figure 3: Coding in GA

Binary-coded strings having 1’s and 0’s are mostly used. The length of the string is usually determined

according to the desired solution accuracy. For example, if four bits are used to code each variable in a

two-variable optimization problem, the strings (0000 0000) and (1111 1111) would represent the points

(xl
1, x

l
2)

T (xu
1 , xu

2 )T respectively, because the sub-strings (0000) and (1111) have the minimum and the

maximum decoded values. Any other eight bit string can be found to represent a point in the search

space according to a fixed mapping rule. Usually, the following linear mapping rule is used:

xi = xl
i +

xu
i − xl

i

2β − 1

β∑

j=0

γj2
j (2)

In the above equation, the variable xi is coded with sub-string si of length β. The decoded value of

a binary sub-string si is calculated as
∑β

j=0 γj2
j where si ∈ (0, 1) and the string s is represented as
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(sβ−1sβ−2....s2s1s0). For example, a four bit string (0111) has a decoded value equal to ((1)20 + (1)21 +

(1)22 + (0)23) or 7. It is worthwhile to mention here that with four bits to code each variable, there are

only 24 or 16 distinct sub-strings possible because each bit-position can take a value either 0 to 1. The

accuracy that can be obtained with a four bit coding is only approximately 1/16th of the search space.

But as this string length is increased by 1, the obtainable accuracy increases exponentially to 1/32th

of the search space. It is not necessary to code all variables in equal sub-string lengths. The length

of a sub-string representing a variable depends on the desired accuracy in that variable. The length of

the sub-string varies with the desired precision of the results, the longer the string length, the more the

accuracy. The relationship between string length β and precision α is

(xu
i − xl

i)10α ≤ (2β − 1). (3)

Once the coding of the variables is complete, the corresponding point x = (x1, x2, ..., xN )T can be found.

(Eq. 2). There after, the function value at the point x can also be calculated by substituting x in the

given objective function f(x) .

2.5 Fitness Function

As mentioned earlier, GAs mimic the survival-of-the-fittest principle of nature to make a search process.

Therefore, GAs are naturally suitable for solving maximization problems. Maximization problems are

usually transformed into maximization problem by suitable transformation. In general, a fitness function

F (i) is first derived from the objective function and used in successive genetic operations. Fitness in

biological sense is a quality value which is a measure of the reproductive efficiency of chromosomes. In

genetic algorithm, fitness is used to allocate reproductive traits to the individuals in the population and

thus act as some measure of goodness to be maximized. This means that individuals with higher fitness

value will have higher probability of being selected as candidates for further examination. Certain genetic

operators require that the fitness function be non-negative, although certain operators need not have this

requirement. For maximization problems, the fitness function can be considered to be the same as the

objective function or F (i) = O(i). For minimization problems, to generate non-negative values in all the

cases and to reflect the relative fitness of individual string, it is necessary to map the underlying natural

objective function to fitness function form. A number of such transformations is possible. Two commonly

adopted fitness mappings is presented below.

F(x) =
1

1 + f(x)
(4)

This transformation does not alter the location of the minimum, but converts a minimization problem

to an equivalent maximization problem. An alternate function to transform the objective function to get

the fitness value F (i) as below.

F(i) = V −
O(i)P

∑P

i=1 O(i)
, (5)

where, O(i) is the objective function value of i th individual, P is the population size and V is a large

value to ensure non-negative fitness values. The value of V adopted in this work is the maximum value of

the second term of equation 5 so that the fitness value corresponding to maximum value of the objective

function is zero. This transformation also does not alter the location of the solution, but converts a

minimization problem to an equivalent maximization problem. The fitness function value of a string is

known as the string fitness.

2.6 GA operators

The operation of GAs begins with a population of a random strings representing design or decision vari-

ables. The population is then operated by three main operators; reproduction, crossover and mutation

to create a new population of points. GAs can be viewed as trying to maximize the fitness function, by

evaluating several solution vectors. The purpose of these operators is to create new solution vectors by

selection, combination or alteration of the current solution vectors that have shown to be good tempo-

rary solutions. The new population is further evaluated and tested till termination. If the termination
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criterion is not met, the population is iteratively operated by the above three operators and evaluated.

This procedure is continued until the termination criterion is met. One cycle of these operations and

the subsequent evaluation procedure is known as a generation in GAs terminology. The operators are

described in the following steps.

2.7 Reproduction

Reproduction (or selection) is an operator that makes more copies of better strings in a new population.

Reproduction is usually the first operator applied on a population. Reproduction selects good strings

in a population and forms a mating pool. This is one of the reason for the reproduction operation to

be sometimes known as the selection operator. Thus, in reproduction operation the process of natural

selection cause those individuals that encode successful structures to produce copies more frequently. To

sustain the generation of a new population, the reproduction of the individuals in the current population is

necessary. For better individuals, these should be from the fittest individuals of the previous population.

There exist a number of reproduction operators in GA literature, but the essential idea in all of them

is that the above average strings are picked from the current population and their multiple copies are

inserted in the mating pool in a probabilistic manner.

Roulette-Wheel Selection: The commonly-used reproduction operator is the proportionate re-

production operator where a string is selected for the mating pool with a probability proportional to its

fitness. Thus, the ith string in the population is selected with a probability proportional to Fi. Since

the population size is usually kept fixed in a simple GA, the sum of the probability of each string being

selected for the mating pools must be one. Therefore, the probability for selecting the ith string is

pi =
Fi∑n

i=1 Fi

(6)

where n is the population size. One way to implement this selection scheme is to imagine a roulette-wheel

with it’s circumference marked for each string proportionate to the string’s fitness. The roulette-wheel is

spun n times. each time selecting an instance of the string chosen by the roulette-wheel pointer. Since

the circumference of the wheel is marked according to a string’s fitness, this roulette-wheel mechanism is

expected to make Fi/F copies of the ith string in the mating pool. The average fitness of the population

is calculated as

F =

n∑

i=1

Fi (7)

FitnessPopulation

25.01

 5.02

40.03

10.04

20.05

3

4

5

1

2

Figure 4: A roulette-wheel marked for five individuals according to their fitness values. Third individual

has a higher probability of selection than any other

The figure shows a roulette-wheel for each individuals having different fitness values. since the third

individual has higher fitness value than any other, it is expected that the roulette-wheel selection will

choose the third individual more than any other individual. This roulette-wheel selection scheme can

be simulated easily. Using the fitness value Fi of all strings, the probability os selecting s string pi can

be calculated. Thereafter, the cumulative probability Pi of each string being copied can be calculated
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by by adding the individual probabilities from the top of the list. Thus, the bottom-most string in the

population should have a cumulative probability values from Pi-1 to P. The first string represents the

cumulative values from zero to P1. Thus, the cumulative probability of any sting lies between 0 to 1.

In order to choose n strings, n random numbers between zero to one are created at random. Thus, s

string that represents the chosen random number in the cumulative probability range (calculated from

the fitness values) for the string is chosen to the mating pol. This way the string with a higher fitness

value will represent a larger range in the cumulative probability values and therefore has a higher of

being copied into the mating pool. On the other hand, a string with a smaller fitness value represents

a smaller range in cumulative probability values and has a smaller probability of being copied into the

mating pool.

Stochastic remainder selection: A better selection scheme is also presented here The basic

idea of this selection is to remove or copy the strings depending on the values of reproduction counts.

This is achieved by computing the reproduction count associated with each string. Reproduction count

is computed based on the fitness value by stochastic remainder selection without replacement as it is

superior to other schemes.Hence, this scheme is recommended. First the probability of selection ps is

calculated as ps = F (i)/
∑

F (i). The expected number of individuals of each string is calculated as

ei = ps × P , where P is the population size. The fractional parts of ei are treated as probabilities with

which individuals are selected for reproduction. One by one Bernoulli trials (i.e. weighted coin tosses)

are performed using the fractional part of ei. For example, a string with ei = 1.5 will get a single count

surely and another with a probability of 0.5. This is continued till all the candidates in the population

are examined. Reproduction is done based on this computed reproduction count. Individuals with 0

count are eliminated from the population. Other individuals with non-zero counts get multiple copies

in population equal to the value of their counts. The size of the population is kept constant and this

completes the reproduction operation. Different selection schemes vary in principle by assigning different

number of copies to better strings in the population but in all selection schemes the essential idea is that

more copies are allocated to the strings with higher fitness values.

2.8 Crossover

A crossover operator is used to recombine two strings to get a better string. In crossover operation,

recombination process creates different individuals in the successive generations by combining material

from two individuals of the previous generation. In reproduction, good strings in a population are

probabilistic-ally assigned a larger number of copies and a mating pool is formed. It is important to note

that no new strings are formed in the reproduction phase. In the crossover operator, new strings are

created by exchanging information among strings of the mating pool.

The two strings participating in the crossover operation are known as parent strings and the resulting

strings are known as children strings. It is intuitive from this construction that good sub-strings from

parent strings can be combined to form a better child string, if an appropriate site is chosen. With a

random site, the children strings produced may or may not have a combination of good sub-strings from

parent strings, depending on whether or not the crossing site falls in the appropriate place. But this

is not a matter of serious concern, because if good strings are created by crossover, there will be more

copies of them in the next mating pool generated by crossover. It is clear from this discussion that the

effect of cross over may be detrimental or beneficial. Thus, in order to preserve some of the good strings

that are already present in the mating pool, all strings in the mating pool are not used in crossover.

When a crossover probability, defined here as pc is used, only 100pc per cent strings in the population

are used in the crossover operation and 100(1− pc) per cent of the population remains as they are in the

current population. A crossover operator is mainly responsible for the search of new strings even though

mutation operator is also used for this purpose sparingly.

Many crossover operators exist in the GA literature.One site crossover and two site crossover are the

most common ones adopted. In most crossover operators, two strings are picked from the mating pool at

random and some portion of the strings are exchanged between the strings. Crossover operation is done

at string level by randomly selecting two strings for crossover operations. A one site crossover operator is

performed by randomly choosing a crossing site along the string and by exchanging all bits on the right

side of the crossing site as shown in Fig. 5.
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String 1 011|01100 String 1 011|11001

String 2 110|11001 String 2 011|01100

Before crossover After crossover

Figure 5: One site crossover operation

String 1 011|011|00 String 1 011|110|00

String 2 110|110|01 String 2 011|011|01

Before crossover After crossover

Figure 6: Two site crossover operation

In one site crossover, a crossover site is selected randomly (shown as vertical lines). The portion right

of the selected site of these two strings are exchanged to form a new pair of strings. The new strings are

thus a combination of the old strings. Two site crossover is a variation of the one site crossover, except

that two crossover sites are chosen and the bits between the sites are exchanged as shown in Fig. 6.

One site crossover is more suitable when string length is small while two site crossover is suitable for

large strings. Hence the present work adopts a two site crossover. The underlying objective of crossover

is to exchange information between strings to get a string that is possibly better than the parents.

2.9 Mutation

Mutation adds new information in a random way to the genetic search process and ultimately helps

to avoid getting trapped at local optima. It is an operator that introduces diversity in the population

whenever the population tends to become homogeneous due to repeated use of reproduction and crossover

operators. Mutation may cause the chromosomes of individuals to be different from those of their parent

individuals.

Mutation in a way is the process of randomly disturbing genetic information. They operate at the

bit level; when the bits are being copied from the current string to the new string, there is probability

that each bit may become mutated. This probability is usually a quite small value, called as mutation

probability pm. A coin toss mechanism is employed; if random number between zero and one is less than

the mutation probability, then the bit is inverted, so that zero becomes one and one becomes zero. This

helps in introducing a bit of diversity to the population by scattering the occasional points. This random

scattering would result in a better optima, or even modify a part of genetic code that will be beneficial

in later operations. On the other hand, it might produce a weak individual that will never be selected

for further operations.

The need for mutation is to create a point in the neighborhood of the current point, thereby achieving

a local search around the current solution. The mutation is also used to maintain diversity in the

population. For example, the following population having four eight bit strings may be considered:

01101011

00111101

00010110

01111100.

It can be noticed that all four strings have a 0 in the left most bit position. If the true optimum

solution requires 1 in that position, then neither reproduction nor crossover operator described above

will be able to create 1 in that position. The inclusion of mutation introduces probability pm of turning

0 into 1.

These three operators are simple and straightforward. The reproduction operator selects good strings

and the crossover operator recombines good sub-strings from good strings together, hopefully, to create

a better sub-string. The mutation operator alters a string locally expecting a better string. Even though

none of these claims are guaranteed and/or tested while creating a string, it is expected that if bad strings
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are created they will be eliminated by the reproduction operator in the next generation and if good strings

are created, they will be increasingly emphasized. Further insight into these operators, different ways

of implementations and some mathematical foundations of genetic algorithms can be obtained from GA

literature.

Application of these operators on the current population creates a new population. This new pop-

ulation is used to generate subsequent populations and so on, yielding solutions that are closer to the

optimum solution. The values of the objective function of the individuals of the new population are

again determined by decoding the strings. These values express the fitness of the solutions of the new

generations. This completes one cycle of genetic algorithm called a generation. In each generation if the

solution is improved, it is stored as the best solution. This is repeated till convergence.

3 GA - Illustrated

To understand the working of GA, a simple two variable function is solved using GA. Detailed steps and

solution obtained are listed below. Consider the following minimization problem

f(x1, x2) = (x1
2 + x2 − 11) + (x1 + x2

2 − 7)
2

(8)

in the interval 0 ≤ x1, x2 ≤ 6. The true solution to this problem is (3, 2)T having a function value equal

to zero.

Step 1: To solve this problem using genetic algorithm, a binary coding is chosen to represent

variables x1 and x2. In the calculation here, 10-bits are chosen for each variable, thereby making the

total string length equal to 20. With 10 bits, we can get a solution accuracy of (6-0)/(210-1) or 0.006 in

the interval (0,6). The crossover and mutation probabilities are assigned to be 0.8 and 0.05 respectively.

The population size is 20 and the number of generation is 30. The built in c random number generator

is used and stochastic sampling with out replacement is used for selection The next step is to evaluate

each string in the population We calculate the fitness of the first string.

Step 2: The next step is to calculate the fitness of each population. This is done by decoding the

strings. The first sub-string (1000001110) decodes to a value equal to (29+23+22+21) or 525. Thus the

corresponding parameter is 0 + (6-0) * 525/1023 or 3.09 Let a second sub-string (0001110000) decodes to

a value equal to 112. Thus the corresponding parameter is 0 + (6-0) * 112/1023 or 0.66. so the first string

corresponds to the point x(0) = (3.09, 0.66)
T

Substituting these values in to the objective function we will

the function value, which is equal to 12.816. Since the problem is minimization one, the fitness function

of this point is calculated as F(x(1)) = 1.0/(1.0+12.816) = 0.072 This value is used in the reproduction

operation. The table (3) provide the details of other individuals.

Step 3: Since the iteration has not reached the upper limit, we proceed to next step.

Step 4: In this step the selection is done using stochastic sampling without replacement The will

generate reproduction count based on the fitness value. For example the first individual has a count 0, the

second has 1 and the fourth has 2. Note that first has a very high objective function value and hence got

zero count. This individual will not be copied. But the fourth one with a low objective function value gets

count 2 and will get two copies in the next population. This completes the selection or reproduction. This

is followed by the application of crossover and mutation operation and the resulting new population is

show in the later half of the table. Note that in the due to these operation, individual with high objective

function value are eliminated. However, due to crossover and mutation some individual solutions got worse

(12,17) while some other got better (6,11) The improvement is not significant in the first generation. But

comparing the initial and solution at 30, one can infer that all the individuals actually improved. See

figure (7 and 8)

4 GAs and Traditional Methods

As seen from the above description of the working principles of GAs, they are radically different from most

of the traditional optimization methods. However, the fundamental differences are described subsequently.

GAs work with a string-coding of variables instead of the variables. The advantage of working with a

coding of variables is that the coding discretizes the search space, even though the function may be
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No String 1 String 2 x1 x2 z f c String 1 String 2 x1 x2 x f

0 1000001110 0001110000 3.0 0.6 12.8 .072 0 010000100 01000011011 1.5 3.1 50.2 .020

1 0001011101 1100000100 0.5 4.5 235.4 .004 1 000101110 10010110000 0.5 1.0 122.5 .008

2 0010110110 0000110000 1.0 0.2 126.0 .008 1 001011011 11001110000 1.0 3.6 94.0 .011

3 0100001001 1000011011 1.5 3.1 50.0 .020 2 010000100 10000011001 1.5 0.1 100.6 .010

4 1011001101 0100111010 4.2 1.8 73.0 .014 1 101000111 11010111110 3.8 4.1 252.2 .004

5 1001111001 0111100011 3.7 2.8 53.9 .018 1 100111101 10111100011 3.7 2.8 55.0 .018

6 1000111011 1101111111 3.3 5.2 601.2 .002 0 001110101 11001000011 1.3 3.4 67.4 .015

7 0011100111 1001110100 1.3 3.6 92.7 .011 1 000110111 00010110100 0.6 1.0 118.2 .008

8 0100101011 0010010010 1.7 0.8 70.3 .014 1 010010100 10010010010 1.7 0.8 71.0 .014

9 0010101011 1000110000 1.0 3.2 67.9 .014 1 001110111 00101010000 1.4 1.9 53.0 .018

10 0100101001 0011110000 1.7 1.4 53.7 .018 1 010010100 11100000100 1.7 4.5 244.1 .004

11 1100110000 0101111110 4.7 2.2 207.9 .005 1 011010000 00001111110 2.4 0.7 34.6 .028

12 0110001101 1011111111 2.3 4.5 243.4 .004 1 111000110 10110111101 5.3 2.6 427.7 .002

13 0000100111 1011011000 0.2 4.2 175.9 .006 1 000001010 10100100110 0.1 1.7 100.9 .010

14 0010111001 0111011001 1.0 2.7 52.8 .019 1 000011100 10011011001 0.3 1.2 117.9 .008

15 0011101110 1001000011 1.4 3.4 67.1 .015 2 001000101 11000100011 0.8 3.2 67.6 .015

16 1111110000 0100001110 5.9 1.5 654.0 .002 0 110001010 10110101110 4.6 2.5 183.2 .005

17 0110010101 0110101110 2.3 2.5 11.0 .083 2 011010011 11111011000 2.4 5.7 829.6 .001

18 0110001110 0011000101 2.3 1.1 30.4 .032 2 011000111 00011000101 2.3 1.1 30.4 .032

19 1100111110 1101001111 4.8 4.9 820.4 .001 0 011000111 00011010111 2.3 1.2 27.8 .035

Table 1: Evaluation and Reproduction Phases on a Population

1
0



0

1

2

3

4

5

6

0 1 2 3 4 5 6

x_
2

x_1

Solution point*

Generation = 0

0

1

2

3

4

5

6

0 1 2 3 4 5 6

x_
2

x_1

Solution point*

Generation = 29

Figure 7: The objective function value of the best point in the population for GA runs with different

random seeds. All the three cases converge quickly to the optimum point

continuous. On the other hand, since GAs require only function values at various discrete points, a

discrete or discontinuous function can be handled with no extra burden. This allows GAs to be applied to

a wide variety of problems. Another advantage is that the GA operators exploit the similarities in string-

structures to make an effective search. The most striking difference between GAs and many traditional

optimization methods is that GAs work with a population of points instead of a single point. Because there

are more than one string being processed simultaneously, it is very likely that the expected GA solution

may be a global solution. Even though some traditional algorithms are population based, like Box’s

evolutionary optimization and complex search methods, those methods do not use previously obtained

information efficiently. In GAs, previously found good information is emphasized using reproduction

operator and propagated adaptively through crossover and mutation operators. Another advantage with

a population-based search algorithm is that multiple optimal solutions can be captured in the population

easily, thereby reducing the effort to use the same algorithm many times.

Genetic algorithms differ from conventional optimization and search procedures in several fundamental

ways. It can be summarized as follows:

1. Genetic algorithms work with a coding of solution set, not the solutions themselves.

2. Genetic algorithms search from a population of solutions, not a single solution.

3. Genetic algorithms use payoff information (fitness function), not derivatives or other auxiliary

knowledge.

4. Genetic algorithms use probabilistic transition rules, not deterministic rules.

4.1 Exploitation and exploration

Search is one of the more universal problem-solving methods for such problems where one cannot de-

termine a priory the sequence of steps leading to a solution. Search can be performed with either blind

strategies or heuristic strategies. Blind search strategies do not use information about the problem do-

main. Heuristic search strategies use additional information to guide the search along with the best

search directions. There are two important issues in search strategies: exploiting the best solution and
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Figure 8: The objective function value of the best point in the population for GA runs with different

random seeds.

exploring the search space. Hill-climbing is an example of a strategy which exploits the best solution for

possible improvement while ignoring the exploration of the search space. Random search is an example

of a strategy which explores the search space while ignoring the exploitation of the promising regions

of the search space. Genetic algorithms are a class of general-purpose can make a remarkable balance

between exploration and exploitation of the search space. At the beginning of genetic search, there is

a widely random and diverse population and crossover operator tends to perform widespread search for

exploring all solution space. As the high fitness solutions develop, the crossover operator provides ex-

ploration in the neighborhood of each of them. In other words, what kinds of searches (exploitation or

exploration) a crossover performs would be determined by the environment of the genetic system (the

diversity of population), but not by the operator itself. In addition, simple genetic operators are designed

as general-purpose search methods (the domain-independent search methods); they perform essentially

a blind search and could not guarantee to yield an improved offspring.

4.2 Population-based search

Generally, shown in Figure 1, the algorithm for solving optimization problem is a sequence of compu-

tational steps which asymptotically converge to optimal solution. Most classical optimization methods

generate a deterministic sequence of computation based on the gradient or higher-order derivatives of

objective function. This point-to-point approach takes the danger of falling in local optima. Genetic

algorithms perform a multiple directional search by maintaining a population of potential solutions. The

population-to-population approach attempts to make the search escape from local optima. Population

undergoes a simulated evolution: At each generation the relatively good solutions are reproduced while

the relatively bad solutions die. Genetic algorithms use probabilistic transition rules to select someone

to be reproduced and someone to die so as to guide their search toward regions of the search space with

like improvement.

5 Applications of GA

Nearly everyone can gain benefits from Genetic Algorithms, once he can encode solutions of a given

problem to chromosomes in GA, and compare the relative performance (fitness) of solutions. An effective
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GA representation and meaningful fitness evaluation are the keys of the success in GA applications. The

appeal of GAs comes from their simplicity and elegance as robust search algorithms as well as from their

power to discover good solutions rapidly for difficult high-dimensional problems. GAs are useful and

efficient when

1. The search space is large, complex or poorly understood

2. Domain knowledge is scarce or expert knowledge is difficult to encode to narrow the search space

3. No mathematical analysis is available

4. Traditional search methods fail

The advantage of the GA approach is the ease with which it can handle arbitrary kinds of constraints

and objectives; all such things can be handled as weighted components of the fitness function, making it

easy to adapt the GA scheduler to the particular requirements of a very wide range of possible overall

objectives.

GAs have been used for problem-solving and for modeling. Gas are applied to many scientific, engi-

neering problems, in business and entertainment, including:

• Optimization: GAs have been used in a wide variety of optimization tasks, including numerical

optimization, and combinatorial optimization problems such as traveling salesman problem (TSP),

circuit design [Louis 1993] , job shop scheduling [Goldstein 1991] and video & sound quality opti-

mization.

• Automatic Programming: GAs have been used to evolve computer programs for specific tasks, and

to design other computational structures, for example, cellular automata and sorting networks.

• Machine and robot learning: GAs have been used for many machine- learning applications, including

classification and prediction, and protein structure prediction. GAs have also been used to design

neural networks, to evolve rules for learning classifier systems or symbolic production systems, and

to design and control robots.

• Economic models: GAs have been used to model processes of innovation, the development of bidding

strategies, and the emergence of economic markets.

• Immune system models: GAs have been used to model various aspects of the natural immune

system, including somatic mutation during an individuals lifetime and the discovery of multi-gene

families during evolutionary time.

13



• Ecological models: GAs have been used to model ecological phenomena such as biological arms

races, host-parasite co-evolutions, symbiosis and resource flow in ecologies.

• Population genetics models: GAs have been used to study questions in population genetics, such

as ”under what conditions will a gene for recombination be evolutionarily viable?” Interactions

between evolution and learning: GAs have been used to study how individual learning and species

evolution affect one another.

• Models of social systems: GAs have been used to study evolutionary aspects of social systems, such

as the evolution of cooperation [Chughtai 1995], the evolution of communication, and trail-following

behavior in ants.

6 Conclusion

Genetic Algorithms are easy to apply to a wide range of problems, from optimization problems like the

traveling salesperson problem, to inductive concept learning, scheduling, and layout problems. The results

can be very good on some problems, and rather poor on others. If only mutation is used, the algorithm is

very slow. Crossover makes the algorithm significantly faster. GA is a kind of hill-climbing search; more

specifically it is very similar to a randomized beam search. As with all hill-climbing algorithms, there is

a problem of local maxima. Local maxima in a genetic problem are those individuals that get stuck with

a pretty good, but not optimal, fitness measure. Any small mutation gives worse fitness. Fortunately,

crossover can help them get out of a local maximum. Also, mutation is a random process, so it is possible

that we may have a sudden large mutation to get these individuals out of this situation. (In fact, these

individuals never get out. It’s their offspring that get out of local maxima.) One significant difference

between GAs and hill-climbing is that, it is generally a good idea in GAs to fill the local maxima up with

individuals. Overall, GAs have less problems with local maxima than back-propagation neural networks.

If the conception of a computer algorithms being based on the evolutionary of organism is surprising,

the extensiveness with which this algorithms is applied in so many areas is no less than astonishing.

These applications, be they commercial, educational and scientific, are increasingly dependent on this

algorithms, the Genetic Algorithms. Its usefulness and gracefulness of solving problems has made it the a

more favorite choice among the traditional methods, namely gradient search, random search and others.

GAs are very helpful when the developer does not have precise domain expertise, because GAs possess

the ability to explore and learn from their domain.

In this report, we have placed more emphasis in explaining the use of GAs in many areas of engineering

and commerce. We believe that, through working out these interesting examples, one could grasp the

idea of GAs with greater ease. We have also discuss the uncertainties about whether computer generated

life could exist as real life form. The discussion is far from conclusive and ,whether artificial life will

become real life, will remain to be seen.

In future, we would witness some developments of variants of GAs to tailor for some very specific

tasks. This might defy the very principle of GAs that it is ignorant of the problem domain when used to

solve problem. But we would realize that this practice could make GAs even more powerful.
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